Welcome to ECE 3077
Intro to Probability and Statistics for ECEs

Instructor: Justin Romberg

May 13, 2014
Course goal:

To develop a mathematical framework for modeling and understanding uncertainty
Probability

What is probability?
What is probability?

- Notoriously hard to define
Probability

What is probability?

- Notoriously hard to define
- Definitions often circular
 - likelihood
 - chance
 - odds

Frequentist interpretation

Aristotle: "the probable is that for which the most part happens"

Modern frequentists: Let n_t denote the total number of "trials" and let n_x denote the number of trials where "event x" occurs. Then the probability of x occurring is given by $P(x) = \lim_{n_t \to \infty} \frac{n_x}{n_t}$.
Probability

What is probability?

- Notoriously hard to define
- Definitions often circular
 - likelihood
 - chance
 - odds

Frequentist interpretation
Probability

What is probability?

- Notoriously hard to define
- Definitions often circular
 - likelihood
 - chance
 - odds

Frequentist interpretation

- **Aristotle:** “the probable is that for which the most part happens”
Probability

What is probability?

- Notoriously hard to define
- Definitions often circular
 - likelihood
 - chance
 - odds

Frequentist interpretation

- **Aristotle**: “the probable is that for which the most part happens”
- **Modern frequentists**: Let n_t denote the total number of “trials” and let n_x denote the number of trials where “event x” occurs. Then the probability of x occurring is given by

$$P(x) = \lim_{n_t \to \infty} \frac{n_x}{n_t}$$
Probability

Is the frequentist interpretation adequate?
Probability

Is the frequentist interpretation adequate?

What is the probability that

- the next coin toss will land heads?
Probability

Is the frequentist interpretation adequate?

What is the probability that

- the next coin toss will land heads?
- the next circuit off the assembly line will be faulty?
Is the frequentist interpretation adequate?

What is the probability that

- the next coin toss will land heads?
- the next circuit off the assembly line will be faulty?
- it will rain tomorrow?
Probability

Is the frequentist interpretation adequate?

What is the probability that

- the next coin toss will land heads?
- the next circuit off the assembly line will be faulty?
- it will rain tomorrow?
- I will die of cancer?
Probability

Is the frequentist interpretation adequate?

What is the probability that

- the next coin toss will land heads?
- the next circuit off the assembly line will be faulty?
- it will rain tomorrow?
- I will die of cancer?
- I am telling a lie?
Probability

Is the frequentist interpretation adequate?

What is the probability that
- the next coin toss will land heads?
- the next circuit off the assembly line will be faulty?
- it will rain tomorrow?
- I will die of cancer?
- I am telling a lie?
- an electron will be “spin up”
Probability

Is the frequentist interpretation adequate?

What is the probability that

- the next coin toss will land heads?
- the next circuit off the assembly line will be faulty?
- it will rain tomorrow?
- I will die of cancer?
- I am telling a lie?
- an electron will be “spin up”
- the “big bang theory” of cosmology is correct?
Probability

Is the frequentist interpretation adequate?

What is the probability that

- the next coin toss will land heads?
- the next circuit off the assembly line will be faulty?
- it will rain tomorrow?
- I will die of cancer?
- I am telling a lie?
- an electron will be “spin up”
- the “big bang theory” of cosmology is correct?
- a flying saucer crashed at Roswell?
“Probability is common sense reduced to computation”

— Laplace
“Probability is common sense reduced to computation”

— Laplace

Human intuition is very bad when it comes to probability ...
Simpson’s “Paradox”

Batting averages for the DJs:

<table>
<thead>
<tr>
<th></th>
<th>1995</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derek Jeter</td>
<td>.250</td>
<td>.314</td>
</tr>
<tr>
<td>David Justice</td>
<td>.253</td>
<td>.321</td>
</tr>
</tbody>
</table>

(Ross, *A Mathematician at the Ballpark: Odds and Probabilities for Baseball Fans*, 2004.)
Simpson’s “Paradox”

Batting averages for the DJs:

<table>
<thead>
<tr>
<th></th>
<th>1995</th>
<th>1996</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derek Jeter</td>
<td>.250</td>
<td>.314</td>
<td>.310</td>
</tr>
<tr>
<td>David Justice</td>
<td>.253</td>
<td>.321</td>
<td>.270</td>
</tr>
</tbody>
</table>

(Ross, A Mathematician at the Ballpark: Odds and Probabilities for Baseball Fans, 2004.)
Simpson’s “Paradox”

Batting averages for the DJs:

<table>
<thead>
<tr>
<th></th>
<th>1995</th>
<th>1996</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derek Jeter</td>
<td>12/48</td>
<td>.250</td>
<td>195/360</td>
</tr>
<tr>
<td>David Justice</td>
<td>104/411</td>
<td>.253</td>
<td>149/551</td>
</tr>
</tbody>
</table>

(Ross, *A Mathematician at the Ballpark: Odds and Probabilities for Baseball Fans*, 2004.)
Simpson’s “Paradox”: A less whimsical example

Graduate admissions data for UC Berkeley, 1973:

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applicants</td>
<td>Admitted</td>
</tr>
<tr>
<td>University</td>
<td>8442</td>
<td>44%</td>
</tr>
</tbody>
</table>

Was gender bias rampant at UC Berkeley in the early 70s?

(Bickel et al, “Sex Bias in Graduate Admissions: Data From Berkeley”, Science, 1975.)
Simpson’s “Paradox”: A less whimsical example

Graduate admissions data for UC Berkeley, 1973:

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th></th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applicants</td>
<td>Admitted</td>
<td>Applicants</td>
</tr>
<tr>
<td>Dept. A</td>
<td>825</td>
<td>62%</td>
<td>108</td>
</tr>
<tr>
<td>Dept. B</td>
<td>560</td>
<td>63%</td>
<td>25</td>
</tr>
<tr>
<td>Dept. C</td>
<td>325</td>
<td>37%</td>
<td>593</td>
</tr>
<tr>
<td>Dept. D</td>
<td>417</td>
<td>33%</td>
<td>375</td>
</tr>
<tr>
<td>Dept. E</td>
<td>191</td>
<td>28%</td>
<td>393</td>
</tr>
<tr>
<td>Dept. F</td>
<td>272</td>
<td>6%</td>
<td>341</td>
</tr>
</tbody>
</table>

(Bickel et al, “Sex Bias in Graduate Admissions: Data From Berkeley”, *Science*, 1975.)
Beware of narratives

A study of the incidence of kidney cancer in the 3141 counties in the US shows that the counties in which the incidence of kidney cancer is the lowest are mostly

- rural,
- sparsely populated,
- located in traditionally Republican states in the Midwest, South, and West.

Why?

(Kahneman, *Thinking, Fast and Slow*, 2011)
Beware of narratives

The same study of the incidence of kidney cancer in the 3141 counties in the US shows that the counties in which the incidence of kidney cancer is the highest are mostly

- rural,
- sparsely populated,
- located in traditionally Republican states in the Midwest, South, and West.

How can this be?

(Kahneman, *Thinking, Fast and Slow*, 2011)
“Law of Small Numbers”

The overall rate of kidney cancer in the US is 15 per 100,000
\((p = 0.00015) \)

Armstrong County, Texas has a population of \(n = 2148 \)

Probability of 0 cases: 0.72

Probability of 1 case: 0.24
(3.1x national incidence rate)

Probability of 2 cases: 0.038
(6.2x national incidence rate)

\[\Rightarrow \] 28% chance of incidence rate \(\geq 3 \times \) national average
Law of Large Numbers

The overall rate of kidney cancer in the US is 15 per 100,000
\((p = 0.00015)\)

Los Angeles County, California has a population of \(n = 9.8\) million

mean cases = 1479
std dev = 38.3

\(\Rightarrow\) odds are less than 1 in \(10^{1277}\) that
incidence rate \(\geq 3 \times\) national average
Confirmation Bias

the tendency to seek out evidence that confirms our existing beliefs or hypotheses
Confirmation Bias

Is there such a thing as a “hot hand” in basketball?

Every fan and player alive swears there is ...
Confirmation Bias

Is there such a thing as a “hot hand” in basketball?

Tversky says: “No” Kobe is skeptical

Gilovich, Vallone, and Tversky charted shots for the Philadelphia 76ers for the entire 1980-81 season, and found absolutely no evidence of the influence of the success/failure of previous shots on a current shot

Confirmation Bias

Is there such a thing as a “hot hand” in basketball?

Tversky says: “No” Kobe is skeptical

They repeated the experiment several seasons later with the Boston Celtics with the same results.

Recognizing randomness when we see it

We seem to be hard-wired to look for patterns, and are pretty good at finding them even when none exist…
Recognizing randomness when we see it

We seem to be hard-wired to look for patterns, and are pretty good at finding them even when none exist...

The constellation Pegasus

Apple iPod in 2001
Probabilistic inference

- The incidence rate for disease X is 15 in 100,000
- There is a test for disease X which is 95% accurate — if you have X, there is a 95% chance the test comes back positive, and if you don’t have X, there is a 95% chance it comes back negative.

You test positive for X. What is the probability that you actually have the disease?

Answer: 0.28%

The base rate of 15/100000 carries a lot of information.
The incidence rate for disease X is 15 in 100,000.

There is a test for disease X which is 95% accurate — if you have X, there is a 95% chance the test comes back positive, and if you don’t have X, there is a 95% chance it comes back negative.

You test positive for X. What is the probability that you actually have the disease?
Probabilistic inference

- The incidence rate for disease X is 15 in 100,000
- There is a test for disease X which is 95% accurate — if you have X, there is a 95% chance the test comes back positive, and if you don’t have X, there is a 95% chance it comes back negative.

You test positive for X. What is the probability that you actually have the disease?

Answer: 0.28%
Probabilistic inference

- The incidence rate for disease X is 15 in 100,000
- There is a test for disease X which is 95% accurate — if you have X, there is a 95% chance the test comes back positive, and if you don’t have X, there is a 95% chance it comes back negative.

You test positive for X. What is the probability that you actually have the disease?

Answer: 0.28%

The base rate of 15/100000 carries a lot of information
Probability can be counter-intuitive

Entire industries are based on the fact that humans are bad at probability
Probability can be counter-intuitive

Entire industries are based on the fact that humans are bad at probability.
Probability can be counter-intuitive

Entire industries are based on the fact that humans are bad at probability

All this makes it seem like humans are complete idiots!
So are we?

Sir Francis Galton (1822–1911)
So are we?

Sir Francis Galton (1822–1911)
- cousin of Charles Darwin
So are we?

Sir Francis Galton (1822–1911)
- cousin of Charles Darwin
- statistician (introduced notions of correlation and standard deviation)
So are we?

Sir Francis Galton (1822–1911)
- cousin of Charles Darwin
- statistician (introduced notions of correlation and standard deviation)
- father of eugenics
So are we?

Sir Francis Galton (1822–1911)
- cousin of Charles Darwin
- statistician (introduced notions of correlation and standard deviation)
- father of eugenics

Galton was wary of democracy and distrusted “the mob”
So are we?

Sir Francis Galton (1822–1911)
- cousin of Charles Darwin
- statistician (introduced notions of correlation and standard deviation)
- father of eugenics

Galton was wary of democracy and distrusted “the mob”

How much does this ox weigh?
Vox populi

If we collect hundreds of uneducated farmers from the English countryside (with no particular expertise in weighing oxen), how well will they do?
Vox populi

If we collect hundreds of uneducated farmers from the English countryside (with no particular expertise in weighing oxen), how well will they do?

Average (mean) of the guesses: 1,197 pounds
Vox populi

If we collect hundreds of uneducated farmers from the English countryside (with no particular expertise in weighing oxen), how well will they do?

Average (mean) of the guesses: 1,197 pounds
Actual weight: 1,198 pounds

Example of the wisdom of the crowds.
Vox populi

If we collect hundreds of uneducated farmers from the English countryside (with no particular expertise in weighing oxen), how well will they do?

Average (mean) of the guesses: 1,197 pounds
Actual weight: 1,198 pounds

The average guess was significantly more accurate than any single guess.
If we collect hundreds of uneducated farmers from the English countryside (with no particular expertise in weighing oxen), how well will they do?

Average (mean) of the guesses: 1,197 pounds
Actual weight: 1,198 pounds

The average guess was significantly more accurate than any single guess.

Example of the wisdom of the crowds.
Examples of technology that would be impossible without a clear understanding of probability and statistics are endless ...
Insurance
Collaborative filtering / recommender systems
Artificial intelligence

Google’s self-driving car
Data compression and encoding
Digital communications
Radar
Quantum mechanics

Quantum mechanics describes a world that is inherently probabilistic.
Quantum mechanics

Quantum mechanics describes a world that is inherently probabilistic

Without quantum mechanics, there are no semiconductors...
Quantum mechanics

Without semiconductors, we are stuck ...

... with this ...

... instead of this:

ENIAC, 1946
≈ 18,000 cubic feet
≈ 500 flops

Samsung Galaxy S4, 2013
≈ 0.0026 cubic feet
≈ 50 \cdot 10^9 \text{ flops}