1. Using your class notes, prepare a 1-2 paragraph summary of what we talked about in class in the last week. I do not want just a bulleted list of topics, I want you to use complete sentences and establish context (Why is what we have learned relevant? How does it connect with other things you have learned here or in other classes?). The more insight you give, the better.

2. (a) Let A be an $N \times N$ symmetric matrix. Show that

\[\text{trace}(A) = \sum_{n=1}^{N} \lambda_n, \]

where the $\{\lambda_n\}$ are the eigenvalues of A.

(b) Recall the definition of the Frobenius norm of an $M \times N$ matrix:

\[\|A\|_F = \left(\sum_{m=1}^{M} \sum_{n=1}^{N} |A[m,n]|^2 \right)^{1/2}. \]

Show that

\[\|A\|_F^2 = \text{trace}(A^T A) = \sum_{r=1}^{R} \sigma_r^2, \]

where R is the rank of A and the $\{\sigma_r\}$ are the singular values of A.

(c) The operator norm (sometimes called the spectral norm) of an $M \times N$ matrix is

\[\|A\| = \max_{x \in \mathbb{R}^N, \|x\|_2 = 1} \|Ax\|_2. \]

(This matrix norm is so important, it doesn’t even require a designation in its notation — if somebody says “matrix norm” and doesn’t elaborate, this is what they mean.) Show that

\[\|A\| = \sigma_1, \]

where σ_1 is the largest singular value of A. For which x does

\[\|Ax\|_2 = \|A\| \cdot \|x\|_2 \ ? \]

(d) Prove that $\|A\| \leq \|A\|_F$. Give an example of an A with $\|A\| = \|A\|_F$.

\[^1\]The trace of a matrix is the sum of the elements on the diagonal: $\text{trace}(A) = \sum_{n=1}^{N} A[n,n]$.

Last updated 16:20, November 1, 2016
3. Let $f(x)$ be a functional on \mathbb{R}^N; that is, $f(\cdot)$ maps a vector to a real number. Recall the definition of the gradient of f at x:

$$\nabla_x f = \begin{bmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} \\
\vdots \\
\frac{\partial f}{\partial x_N}
\end{bmatrix},$$

where the x_i are the components of x.

(a) Calculate the gradient for $f(x) = \|x\|_2^2$.
(b) Calculate the gradient for $f(x) = \|Ax\|_2^2$, where A is an $M \times N$ matrix.
(c) Calculate the gradient for $f(x) = y^T Ax$.
(d) A necessary condition for x_0 to be a minimizer of $f(x)$ is that $\nabla_{x=x_0} f = 0$. Show that a minimizer \hat{x} of

$$\min_x \|y - Ax\|_2^2$$

must obey the so-called normal equations

$$A^T Ax = A^T y.$$

(e) Having $\nabla_{x=x_0} f = 0$ is also a sufficient condition for x_0 to be a minimizer when $f(x)$ is convex. If f is twice differentiable, this is the same as the Hessian matrix

$$H_x = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_N} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_N} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_N \partial x_1} & \frac{\partial^2 f}{\partial x_N \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_N^2}
\end{bmatrix}$$

being symmetric positive semi-definite. Show that this is indeed the case for $f(x) = \|y - Ax\|_2^2$.

(f) Show that the minimizer \hat{x} of

$$\min_x \|y - Ax\|_2^2 + \delta \|x\|_2^2$$

is always

$$\hat{x} = (A^T A + \delta I)^{-1} A^T y,$$

no matter what A is. Make sure to include an explanation of why $A^T A + \delta I$ is always invertible when $\delta > 0$.

4. Download the file blocksdeconv.mat. This file contains the vectors:

- x: the 512 × 1 “blocks” signal
- h: a 30 × 1 boxcar filter
• \(y \): a \(541 \times 1 \) vector of observations of \(h \) convolved with \(x \)
• \(yn \): a noisy observation of \(y \). The noise is iid Gaussian with standard deviation .01.

(a) Write a function which takes an vector \(h \) of length \(L \) and a number \(N \), and returns the \(M \times N \) (with \(M = N + L - 1 \)) matrix \(A \) such that for any \(x \in \mathbb{R}^N \), \(Ax \) is the vector of non-zero values of \(h \) convolved with \(x \).

(b) Use MATLAB’s \texttt{svd()} command to calculate the SVD of \(A \). What is the largest singular value? What is the smallest singular value? Calculate \(A^\dagger y \) and plot it (\(y \) is the noise-free data).

(c) Apply \(A^\dagger \) to the noisy \(yn \). Plot the result. Calculate the mean-square error \(\|x - \hat{x}\|_2^2 \) and compare to the measurement error \(\|y - yn\|_2^2 \).

(d) Form an approximation to \(A \) by truncating the last \(q \) terms in the singular value decomposition:
\[
A' = \sum_{k=1}^{R-q} \sigma_k u_k v_k^T.
\]
Apply the new pseudo-inverse \(A'^\dagger \) to \(yn \) and plot the result. Try a number of different values of \(q \), and choose the one which “looks best” to turn in (indicate the value of \(q \) used). Calculate the mean-square reconstruction error.

(e) Now form another approximate inverse using Tikhonov regularization. Try a number of different values for \(\delta \) and choose the one which “looks best” to turn in (indicate the value of \(\delta \) used). Calculate the mean-square reconstruction error.

(f) Summarize your findings by comparing the MSE in parts (c), (d), and (e). Also include the error of doing nothing: \(\|x - yn'\|_2^2 \) where \(yn' \) is the appropriate piece of \(yn \).

5. Suppose that we want to create a realization of Gaussian noise \(e \in \mathbb{R}^5 \) with covariance matrix
\[
R = \begin{bmatrix}
1 & 1/3 & 1/9 & 1/27 & 1/81 \\
1/3 & 1 & 1/3 & 1/9 & 1/27 \\
1/9 & 1/3 & 1 & 1/3 & 1/9 \\
1/27 & 1/9 & 1/3 & 1 & 1/3 \\
1/81 & 1/27 & 1/9 & 1/3 & 1
\end{bmatrix}.
\]
We have at our disposal a random number generator that creates independent and identically distributed Gaussian random variables with variance 1. We use this to generate \(e_{\text{ind}} \), and then pass the output through a matrix to give it the desired covariance structure. Find a matrix \(Q \) such that the covariance matrix of \(Qe_{\text{ind}} \) is \(R \).

6. Let
\[
A = \begin{bmatrix}
2 & 4 & -1 \\
1 & -2 & 1 \\
4 & 0 & 1 \\
5 & 6 & -1 \\
8 & -4 & 2
\end{bmatrix}.
\]
Suppose that we observe

\[y = Ax + e \]

where

\[y = \begin{bmatrix} 6.1709 \\ -1.6492 \\ 6.6345 \\ 13.8419 \\ 4.9064 \end{bmatrix}, \]

and \(e \) has covariance matrix \(R \) from question 5.

(a) Find the best linear unbiased estimate \(\hat{x}_{\text{blue}} \) of \(x \).

(b) What is the mean squared error of your estimate \(\mathbb{E}[\| x - \hat{x}_{\text{blue}} \|^2] \)?