Weighted Least Squares

Standard least-squares tries to fit a vector \mathbf{x} to a set of “measurements” \mathbf{y} by solving

$$\minimize_{\mathbf{x} \in \mathbb{R}^N} \|\mathbf{y} - A\mathbf{x}\|_2^2.$$

Now, what if some of the measurements are more reliable than others? Or, what if the errors are closely correlated between measurements?

There is a systematic way to treat both of these cases using weighted least-squares. Instead of minimizing the energy in the residual

$$\|\mathbf{r}\|_2^2 = \|\mathbf{y} - A\mathbf{x}\|_2^2,$$

we will minimize

$$\|W\mathbf{r}\|_2^2 = \|W\mathbf{y} - WAx\|_2^2,$$

for some $M \times M$ weighting matrix W.

When W is a diagonal matrix,

$$W = \begin{bmatrix} w_{11} & & \\ & w_{22} & \\ & & \ddots \\ & & & w_{MM} \end{bmatrix},$$

then the error we are minimizing looks like

$$\|W\mathbf{r}\|_2^2 = w_{11}^2 r[1]^2 + w_{22}^2 r[2]^2 + \cdots + w_{MM}^2 r[M]^2.$$
By adjusting the w_{mm}, we can penalize some of the components of the error more than others.

By adding off-diagonal terms, we can account for correlations in the error (we will explore this further later in these notes).

Solving

$$\minimize_{x \in \mathbb{R}^N} \|W r\|_2^2 = \minimize_{x \in \mathbb{R}^N} \|W \mathbf{y} - WAx\|_2^2,$$

is simple. We simply use least-squares with WA as the matrix, and Wy as the observations:

$$\hat{x}_{wls} = (WA)^\dagger Wy,$$

where $(WA)^\dagger$ is the pseudo-inverse of WA.

For the rest of this section, we will assume that $M \geq N$ (meaning that there are at least as many observations as unknowns) and that A has full column rank. This allows us to write

$$\hat{x}_{wls} = (A^T W^T W A)^{-1} A^T W^T W y.$$

Example: We measure a patient’s pulse 3 times, and record

In this case, we can take

$$A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$
What is the least-square estimate for the pulse rate x_0?

Now say that we were in a hurry when the third measurement was made, so we would like to weigh less than the others. What is the weighted least-squares estimate when

$$
W = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & w_{33}
\end{bmatrix}
$$

What about the particular case when $w_{33} = 1/2$?
Statistical Estimation

Suppose we use the following model for our measurements:

\[y = Ax_0 + e, \]

where \(y \in \mathbb{R}^M \), \(A \) is an \(M \times N \) matrix, \(x_0 \in \mathbb{R}^N \) is what we are interested in estimating, and \(e \in \mathbb{R}^M \) is a random error.

We will assume that each entry of \(e \) has zero mean:

\[\mathbb{E}[e[m]] = 0, \ m = 1, \ldots, M, \quad \mathbb{E}[e] = 0. \]

We will characterize \(e \) through its covariance matrix

\[R[\ell,m] = \mathbb{E}[e[\ell]e[m]], \]

or more compactly

\[R = \mathbb{E}[ee^T]. \]

The diagonal of \(R \) contains the variances of the entries of \(e \), while the off diagonal terms capture the correlations (which is the same as covariance, since all of the \(e[m] \) are zero mean).

For example, if two measurement errors have

\[
\begin{align*}
\text{var}(e[1]) &= \mathbb{E}[e[1]^2] = 3, \\
\text{var}(e[2]) &= \mathbb{E}[e[2]^2] = 2, \\
\text{and} \quad \text{cov}(e[1], e[2]) &= \mathbb{E}[e[1]e[2]] = -1,
\end{align*}
\]

then

\[R = \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}. \]

It is always true that covariance matrices are symmetric and positive semi-definite (so their eigenvalues are \(\geq 0 \)).
A handy fact that we will use repeatedly below is that if \(e \) has covariance matrix \(R \), then for any matrix \(M \), the covariance of \(Me \) is\(^1\)

\[
\]

Questions:

1. Suppose that the entries of \(e \) have variances \(\nu_m^2 = E[e[m]^2] \).
 Calculate
 \[
 E[\|e\|_2^2] = \quad \text{__________}.
 \]
 (the expected energy of \(e \)).
 Answer:

 \[
 E[\|e\|_2^2] = \sum_{m=1}^{M} E[e[m]^2] = \sum_{m=1}^{M} \nu_m^2.
 \]

\(^1\) If you want to see why that second-to-last step is true more explicitly, set \(Q = Mee^TM^T \). Then if \(m_i \) is the \(i \)th row of \(M \),

\[
Q[i, j] = (Me)[i](Me)[j] = \langle e, m_i \rangle \langle m_j, e \rangle = \sum_{\ell} \sum_{k} M[i, \ell]M[j, k]R[\ell, k] = (M^T R M)[i, j],
\]

and

\[
E[Q[i, j]] = \sum_{\ell} \sum_{k} M[i, \ell]M[j, k]R[\ell, k] = (M^T R M)[i, j],
\]

so \(E[Q] = MRM^T \).
2. Now let \(\mathbf{D} \) be a diagonal matrix

\[
\mathbf{D} = \begin{bmatrix}
d_1 & & \\
& d_2 & \\
& & \ddots \\
& & & d_M
\end{bmatrix}.
\]

Calculate

\[
\mathbb{E}[\|\mathbf{D}\mathbf{e}\|^2_2] = \rule{3cm}{1pt}.
\]

Answer:

\[
\mathbb{E}[\|\mathbf{D}\mathbf{e}\|^2_2] = \sum_{m=1}^{M} \mathbb{E}[d_m^2 \nu[m]^2]
= \sum_{m=1}^{M} d_m^2 \nu_m^2.
\]

3. Suppose \(\mathbf{e} \in \mathbb{R}^M \) has covariance matrix \(\mathbf{R} \). Let \(\mathbf{L} \) be an \(N \times M \) matrix. Calculate

\[
\mathbb{E}[\|\mathbf{L}\mathbf{e}\|^2_2] = \rule{3cm}{1pt}.
\]

Answer: We use two facts which are easily verified (do this at home). First, the inner product of two vectors \(\mathbf{u}, \mathbf{v} \in \mathbb{R}^N \) is equal to the trace of their outer product:

\[
\langle \mathbf{u}, \mathbf{v} \rangle = \text{trace}(\mathbf{u}\mathbf{v}^T).
\]

Second, if \(\mathbf{Q} \) is a square matrix whose entries are random variables, then

\[
\mathbb{E}[\text{trace}(\mathbf{Q})] = \text{trace}(\mathbb{E}[\mathbf{Q}]).
\]
Then
\[E[\|Le\|^2_2] = E[\langle Le, Le \rangle] = E[\text{trace}(Le^TL^T)] = \text{trace}(E[Le^TL^T]) = \text{trace}(L E[ee^T]L^T) = \text{trace}(LRL^T). \]

Uncorrelated errors

Suppose that the random errors are uncorrelated, so that the covariance matrix is diagonal

\[R = E[ee^T] = \begin{bmatrix} \nu_1^2 & 0 & 0 & \cdots \\ 0 & \nu_2^2 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \nu_M^2 \end{bmatrix} \]

If \(\nu_m \) is large, it means that we do not have much confidence in our measurement \(y_m \). On the other hand, if \(\nu_m \) is small, it means that our measurement \(y_m \) is most likely very close to the true value of \((Ax_0)[m]\)

We will see this rigorously below, but in this case, the “correct” weighting for each component is simply the inverse of the standard deviation; the weighting matrix \(W \) should be diagonal with

\[W[m, m] = \frac{1}{\nu_m}, \quad (W = R^{-1/2}). \]
Then the weighted least-squares estimate is given by

\[\hat{x}_{wls} = (A^T W^T W A)^{-1} A^T W^T W y \]

\[= (A^T R^{-1} A)^{-1} A^T R^{-1} y. \]

The reconstruction error of this estimate is

\[x_0 - \hat{x}_{wls} = x_0 - (A^T R^{-1} A)^{-1} A^T R^{-1} (A x_0 + e) \]

\[= - (A^T R^{-1} A)^{-1} A^T R^{-1} e \]

The mean-square error (MSE) of the error for this estimate is calculated using the result of Question 3 above:

\[E[\| x_0 - \hat{x}_{wls} \|_2^2] = \text{trace} \left((A^T R^{-1} A)^{-1} A^T R^{-1} R R^{-1} A (A^T R^{-1} A)^{-1} \right) \]

\[= \text{trace} \left((A^T R^{-1} A)^{-1} A^T R^{-1} A (A^T R^{-1} A)^{-1} \right) \]

\[= \text{trace} \left((A^T R^{-1} A)^{-1} \right) \]

Example. We take \(M \) readings of a patient’s pulse, each has an error of \(\nu^2 \). In this case, the underlying quantity (the pulse) \(x_0 \) is a scalar. The optimal estimate (no matter what \(\nu \) is) is

\[\hat{x} = \frac{1}{M} (y[1] + y[2] + \cdots + y[M]). \]

What is the mean-square error for this estimate?
Answer: The mean-square error is

\[
E[|x_0 - \hat{x}|^2] = E \left[\left| x_0 - \frac{1}{M} \sum_{m=1}^{M} (x_0 + e[m]) \right|^2 \right] \\
= E \left[\left| \frac{1}{M} \sum_{m=1}^{M} e[m] \right|^2 \right] \\
= \frac{1}{M^2} E[\langle e, e \rangle] \\
= \frac{1}{M^2} E[\text{trace}(ee^T)] \\
= \frac{1}{M^2} \text{trace}(E[ee^T]) \\
= \frac{\nu^2}{M},
\]

where the last step follows from the fact that the covariance matrix of the errors \(e \) is diagonal.

Now suppose that the variance for each of the \(M \) measurements is different; \(\nu_1^2, \nu_2^2, \ldots, \nu_M^2 \).

Now what is the best estimate \(\hat{x} \)?

What is the MSE of this estimate?

Answers: We have

\[
A = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, \quad R^{-1} = \begin{bmatrix} 1/\nu_1^2 & 1/\nu_2^2 & \cdots & 1/\nu_M^2 \\ 1/\nu_2^2 & \ddots & \cdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 1/\nu_M^2 & \cdots & \cdots & 1/\nu_M^2 \end{bmatrix},
\]
and

$$(A^T R^{-1} A)^{-1} = \left(\sum_{m=1}^{M} 1/\nu_m^2 \right)^{-1},$$

and so

$$\hat{x} = \frac{\sum_{m=1}^{M} y[m]/\nu_m^2}{\sum_{m=1}^{M} 1/\nu_m^2}.$$

The MSE is

$$\text{trace}((A R^{-1} A)^{-1}) = \left(\sum_{m=1}^{M} 1/\nu_m^2 \right)^{-1}.$$
Best Linear Unbiased Estimator (BLUE)

We now return to the general estimation problem: we observe

$$y = Ax_0 + e,$$

where $e \in \mathbb{R}^M$ is random with

$$E[e] = 0, \quad E[ee^T] = R.$$

Since e is random, the observations y are also random. We can now ask what is the best statistical estimate of x_0. We will restrict ourselves to estimators that have the following properties:

1. **Linearity.** That is, our estimate can be computed by applying a fixed matrix to y,
 $$\hat{x} = Ly,$$
 for some $N \times M$ matrix L.

2. **Unbiased.** Since the estimate \hat{x} is a function of random variables, it is itself a random variable. Our estimator is unbiased if
 $$E[\hat{x}] = x_0,$$
 which means the expectation of the estimation error is zero,
 $$E[\hat{x} - x_0] = 0.$$

We will search for the best such estimator; the best linear unbiased estimator (BLUE).

Let’s make it clear what we mean by “best”. We mean that the MSE of the estimation error, $E[\|\hat{x} - x_0\|_2^2]$ is minimized.
The estimator is linear, so we can write

\[\hat{x} = Ly = L(Ax + e) = LAx + Le, \]

for some matrix \(L \) which we will optimize. We want the estimator to be unbiased, so

\[0 = E[x_0 - \hat{x}] = E[x_0 - LAx - Le] \]
\[= x_0 - LAx_0 - E[Le] \]
\[= x_0 - LAx_0, \]

where the last step comes from the fact that \(E[Le] = 0 \), since \(E[e] = 0 \). Thus we need \(L \) to obey

\[LAx_0 = x_0. \]

That is, we want \(L \) to be a left inverse of \(A \), meaning \(LA = I \).

With these two properties in hand, the variance of our estimate for a qualifying \(L \) is

\[E[\|x_0 - \hat{x}\|_2^2] = E[\|x_0 - LAx_0 - Le\|_2^2] \]
\[= E[\|Le\|_2^2] \]
\[= E[\text{trace}(LRL^T)]. \]

So we would like to find the matrix which minimizes

\[\minimize_{L \in \mathbb{R}^{N \times M}} \text{trace}(LRL^T) \quad \text{subject to} \quad LA = I. \]

I propose that the solution to the above is

\[L_0 = (A^T R^{-1} A)^{-1} A^T R^{-1}. \]
Let’s check this. Clearly $L_0 A = I$, so L_0 is a left inverse. It remains to show that for any other left inverse L,

$$\text{trace}(LRL^T) \geq \text{trace}(L_0 RL_0^T).$$

Write a candidate L as

$$L = L_0 + (L - L_0).$$

Then

$$\text{trace}(LRL^T) = \text{trace}(L_0 RL_0^T) + \text{trace}(L_0 R(L - L_0)^T) + \text{trace}((L - L_0)R(L - L_0)^T).$$

Note that

$$RL_0^T = RR^{-1} A(A^T R^{-1} A)^{-1} = A(A^T R^{-1} A)^{-1}.$$

Thus

$$(L - L_0)RL_0^T = (L - L_0)A(A^T R^{-1} A)^{-1} = 0$$

since both $LA = I$ and $L_0 A = I$. We are left with

$$\text{trace}(LRL^T) = \text{trace}(L_0 RL_0^T) + \text{trace}((L - L_0)R(L - L_0)^T).$$

Since $(L - L_0)R(L - L_0)^T$ is symmetric and positive semi-definite, the term on the right is ≥ 0. So we conclude

$$\text{trace}(LRL^T) \geq \text{trace}(L_0 RL_0^T) \quad \text{for all left inverses } L.$$
Best Linear Unbiased Estimator (BLUE):

From observations,

\[y = Ax_0 + e, \quad \text{E}[ee^T] = R, \]

the BLUE is

\[\hat{x}_{\text{blue}} = (A^T R^{-1} A)^{-1} A^T R^{-1} y. \]

A quick calculation shows

\[L_0 R L_0^T = (A^T R^{-1} A)^{-1}, \]

and so the MSE of the BLUE is

\[
\text{E}[\|x_0 - \hat{x}_{\text{blue}}\|^2] = \text{trace}((A^T R^{-1} A)^{-1}) = \text{sum of eigenvalues of } (A^T R^{-1} A)^{-1}.
\]

\((A^T R^{-1} A)^{-1}\) is sometimes called the **information matrix**.
Exercise: We measure

\[y = Ax + e \]

with

\[A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad y = \begin{bmatrix} 0 \\ 5 \end{bmatrix}, \quad \mathbb{E}[ee^T] = R = \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}. \]

1. Find the best linear unbiased estimate.
 Hint:
 \[R^{-1} = \frac{1}{5} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}. \]

2. Calculate \(\mathbb{E}[\| x_0 - \hat{x}_{\text{blue}} \|_2^2] \).