Convex functions

The **domain** $\text{dom } f$ of a functional $f : \mathbb{R}^N \to \mathbb{R}$ is the subset of \mathbb{R}^N where f is well-defined.

A function(al) f is **convex** if $\text{dom } f$ is a convex set, and

$$f(\theta x + (1 - \theta) y) \leq \theta f(x) + (1 - \theta) f(y)$$

for all $x, y \in \text{dom } f$ and $0 \leq \theta \leq 1$.

f is **concave** if $-f$ is convex.

f is **strictly convex** if $\text{dom } f$ is convex and

$$f(\theta x + (1 - \theta) y) < \theta f(x) + (1 - \theta) f(y)$$

for all $x \neq y \in \text{dom } f$ and $0 < \theta < 1$.

The domain matters. For example,

$$f(x) = x^3$$

is convex if $\text{dom } f = \mathbb{R}_+ = [0, \infty]$ but not if $\text{dom } f = \mathbb{R}$.
We define the extension of f from $\text{dom } f$ to all of \mathbb{R}^N as

$$\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \quad \tilde{f}(x) = +\infty, \quad x \not\in \text{dom } f.$$

If f is convex on $\text{dom } f$, then its extension is also convex on \mathbb{R}^N.

Here are some standard examples for functions on \mathbb{R}:

- affine functions $f(x) = ax + b$ are both convex and concave for $a, b \in \mathbb{R}$,
- exponentials $f(x) = e^{ax}$ are convex for all $a \in \mathbb{R}$,
- powers x^α are convex on \mathbb{R}_+ for $\alpha \geq 1$, concave for $0 \leq \alpha \leq 1$, and convex for $\alpha \leq 0$,
- $|x|^\alpha$ is convex on all of \mathbb{R} for $\alpha \geq 1$.
- the entropy function $x \log x$ is concave on \mathbb{R}_{++},
- logarithms: $\log x$ is concave on \mathbb{R}_{++}.

Here are some standard examples for functionals on \mathbb{R}^N:

- affine functions $f(x) = \langle x, a \rangle + b$ are both convex and concave on all of \mathbb{R}^N,
- any valid norm $f(x) = \|x\|$ is convex on all of \mathbb{R}^N,
- etc
A functional $f : \mathbb{R}^N \to \mathbb{R}$ is convex if and only if the function $g_v : \mathbb{R} \to \mathbb{R}$,

$$g_v(t) = f(\mathbf{x} + t\mathbf{v}), \quad \text{dom } g = \{ t : \mathbf{x} + t\mathbf{v} \in \text{dom } f \}$$

is convex for every $\mathbf{x} \in \text{dom } f$, $\mathbf{v} \in \mathbb{R}^N$.

Example: Let $f(\mathbf{X}) = -\log \det \mathbf{X}$ with $\text{dom } f = S_+^N$. For any $\mathbf{X} \in S_+^N$, we know that

$$\mathbf{X} = \mathbf{U} \Lambda \mathbf{U}^T,$$

for some diagonal, positive Λ, so we can define

$$\mathbf{X}^{1/2} = \mathbf{U} \Lambda^{1/2} \mathbf{U}^T, \quad \text{and} \quad \mathbf{X}^{-1/2} = \mathbf{U} \Lambda^{-1/2} \mathbf{U}^T.$$

Now consider

$$g_v(t) = -\log \det(\mathbf{X} + t\mathbf{V}) = -\log \det(\mathbf{X}^{1/2}(\mathbf{I} + t\mathbf{X}^{-1/2}\mathbf{V}\mathbf{X}^{-1/2})\mathbf{X}^{1/2})$$

$$= -\log \det \mathbf{X} - \log \det(\mathbf{I} + t\mathbf{X}^{-1/2}\mathbf{V}\mathbf{X}^{-1/2})$$

$$= -\log \det \mathbf{X} - \sum_{n=1}^{N} \log(1 + \sigma_i t),$$

where the σ_i are the (positive) eigenvalues of $\mathbf{X}^{-1/2}\mathbf{V}\mathbf{X}^{-1/2}$. The function $-\log(1 + \sigma_i t)$ is convex, so the above is a sum of convex functions, which is convex.
First-order conditions for convexity

We say that f is differentiable if $\text{dom } f$ is an open set (all of \mathbb{R}^N, for example), and the gradient

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_N} \end{bmatrix}$$

exists for each $x \in \text{dom } f$.

If f is differentiable, then it is convex if and only if

$$f(y) \geq f(x) + \nabla f(x)^T(y-x) \quad (1)$$

for all $x, y \in \text{dom } f$.

This means that the linear approximation

$$g(y) = f(x) + \nabla f(x)^T(y-x)$$

is a global underestimator of $f(y)$.
It is easy to show that \(f \) convex, differentiable \(\Rightarrow (1) \). Since \(f \) is convex,
\[
f(x + t(y - x)) \leq (1 - t)f(x) + tf(y), \quad 0 \leq t \leq 1,
\]
and so
\[
f(y) \geq f(x) + \frac{f(x + t(y - x)) - f(x)}{t}, \quad \forall 0 < t \leq 1.
\]
Taking the limit as \(t \to 0 \) on the right yields (1).

It is also true that (1) \(\Rightarrow f \) convex. For a proof, see [BV04, p. 70].

Second-order conditions for convexity

We say that \(f : \mathbb{R}^N \to \mathbb{R} \) is **twice differentiable** if \(\text{dom} \ f \) is an open set, and the \(N \times N \) Hessian matrix
\[
\nabla^2 f(x) = \begin{bmatrix}
\frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_N} \\
\frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
\frac{\partial^2 f(x)}{\partial x_N \partial x_1} & \cdots & \frac{\partial^2 f(x)}{\partial x_N \partial x_2} & \frac{\partial^2 f(x)}{\partial x_N^2}
\end{bmatrix}
\]
exists for every \(x \in \text{dom} \ f \).

If \(f \) is twice differentiable, then it is convex if and only if
\[
\nabla^2 f(x) \succeq 0 \quad (\text{i.e.} \ \nabla^2 f(x) \in S^N_+).
\]
for all \(x \in \text{dom} \ f \). It is strictly convex if an only if
\[
\nabla^2 f(x) \succ 0 \quad (\text{i.e.} \ \nabla^2 f(x) \in S^N_{++}).
\]
You will prove this on the next homework.
Standard examples (from [BV04])

Quadratic functionals:

\[f(x) = \frac{1}{2} x^T P x + q^T x + r, \]

where \(P \) is symmetric, has

\[
\nabla f(x) = P x + q, \quad \nabla^2 f(x) = P,
\]

so \(f(x) \) is convex iff \(P \succeq 0 \).

Least-squares:

\[f(x) = \| Ax - b \|_2^2, \]

where \(A \) is an arbitrary \(M \times N \) matrix, has

\[
\nabla f(x) = 2 A^T (Ax - b), \quad \nabla^2 f(x) = 2 A^T A,
\]

and is convex for any \(A \).

Quadratic-over-linear: In \(\mathbb{R}^2 \), if

\[f(x) = x_1^2 / x_2, \]

then

\[
\nabla f(x) = \begin{bmatrix} 2x_1/x_2 \\ -x_1^2/x_2^2 \end{bmatrix}, \quad \nabla^2 f(x) = \begin{bmatrix} x_2^2 & -x_1 x_2 \\ -x_1 x_2 & x_1 \end{bmatrix} \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix} \quad \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix},
\]

and so \(f \) is convex on \([0, \infty] \times \mathbb{R} (x_1 \geq 0, x_2 \in \mathbb{R})\).
Epigraph

The \textit{epigraph} of a functional \(f : \mathbb{R}^N \to \mathbb{R}\) is the subset of \(\mathbb{R}^{N+1}\) created by filling in the space above \(f\):

\[
epi f = \left\{ \begin{bmatrix} \mathbf{x} \\ t \end{bmatrix} \in \mathbb{R}^{N+1} : \mathbf{x} \in \text{dom } f, \ f(\mathbf{x}) \leq t \right\}.
\]

\(f\) is convex if and only if \(\text{epi } f\) is a convex set.

The gradient of \(f\) at \(\mathbf{x}\), when it exists, is a supporting hyperplane of \(\text{epi } f\) at \(\begin{bmatrix} \mathbf{x} \\ f(\mathbf{x}) \end{bmatrix}\).
References