Distributed Recovery/Regression/Classification using ADMM

By being very crafty with how we do the splitting, we can use ADMM to solve certain kinds of optimization programs in a distributed manner.

We consider (this material comes from [BPC+10, Sec. 8]) the general problem of “fitting” a vector \(\mathbf{x} \in \mathbb{R}^N \) to an observed vector \(\mathbf{b} \in \mathbb{R}^M \) through an \(M \times N \) matrix \(\mathbf{A} \). We will encourage \(\mathbf{x} \) to have certain structure using a regularizer. This type of problem is ubiquitous in signal processing and machine learning — the math stays the same, only the words change from area to area.

At a high level, we are interested in solving

\[
\min_{\mathbf{x}} \quad \text{Loss}(\mathbf{A}\mathbf{x} - \mathbf{b}) + \text{Regularizer}(\mathbf{x})
\]

where the \(M \times N \) matrix \(\mathbf{A} \) and the \(M \)-vector \(\mathbf{b} \) are given. Notice that

\[
\text{Loss}(\cdot) : \mathbb{R}^M \to \mathbb{R}, \quad \text{and} \quad \text{Regularizer}(\cdot) : \mathbb{R}^N \to \mathbb{R}.
\]

We will assume that one or both of these functions are separable, at least at the block level. This means we can write

\[
\text{Loss}(\mathbf{A}\mathbf{x} - \mathbf{b}) = \sum_{i=1}^{B} \ell_i(\mathbf{A}_i\mathbf{x} - \mathbf{b}_i),
\]

where \(\mathbf{A}_i \) are \(M_i \times N \) matrices formed by partitioning the rows of \(\mathbf{A} \), and \(\mathbf{b}_i \in \mathbb{R}^{M_i} \) is the corresponding part of \(\mathbf{b} \). For separable regularizers, we can write

\[
\text{Regularizer}(\mathbf{x}) = \sum_{i=1}^{C} r_i(\mathbf{x}_i),
\]
where the $x_i \in \mathbb{R}^{N_i}$ partition the vector x. These two types of separability will allow us to divide up the optimization in two different ways.

Example: Inverse Problems and Regression

Two popular methods for solving linear inverse problems and/or calculating regressors are solving

$$\min_x \frac{1}{2} \|Ax - b\|_2^2 + \tau \|x\|_2^2,$$

(*Tikhonov regularization* or *ridge regression*), and

$$\min_x \frac{1}{2} \|Ax - b\|_2^2 + \tau \|x\|_1,$$

(*basis pursuit denoising* or *the LASSO*).

These both clearly fit the separability criteria, as

$$\|Ax - b\|_2^2 = \sum_{m=1}^M (\langle x, a_m \rangle - b[m])^2,$$

$$\|x\|_2^2 = \sum_{n=1}^N (x[n])^2$$

$$\|x\|_1 = \sum_{n=1}^N |x[n]|,$$

where a_m^T is the mth row of A.
Example: Support Vector Machines

Previously, we saw how if we are given a set of M training examples (x_m, y_m), where $x_m \in \mathbb{R}^N$ and $y_m \in \{-1, 1\}$, we can find a maximum margin linear classifier by solving

$$
\min_{w,z} \|w\|_2^2 \quad \text{subject to} \quad y_m(z - \langle x_m, w \rangle) + 1 \leq 0, \quad m = 1, \ldots, M.
$$

With the classifier trained (optimal solution w^*, z^* computed), we can assign a label y' to a new point x' using

$$
y' = \text{sign}(\langle x', w^* \rangle + z^*).
$$

Instead of enforcing the constraints above strictly, we can allow some errors by penalizing mis-classifications on the training data appropriately. One reasonable way to do this is make the loss zero if $y_m(z - \langle x_m, w \rangle) + 1 \leq 0$, and then have it increase linearly as this quantity exceeds zero. That is, we solve

$$
\min_{w,z} \sum_{m=1}^M \ell(y_m(z - \langle x_m, w \rangle) + 1) + \|w\|_2^2,
$$

where $\ell(\cdot)$ is the hinge loss

$$
\ell(u) = (u)_+ = \begin{cases}
0, & u \leq 0, \\
 u, & u > 0.
\end{cases}
$$

So “soft margin” SVM fits our model as what is inside the $\ell(\cdot)$ can be written as an affine function of the optimization variables:

$$
y_m(z - \langle x_m, w \rangle) + 1 = [-y_m x_m \ y_m] \begin{bmatrix} w \\ z \end{bmatrix} + 1.
$$
Splitting across examples

This framework is useful when we have “many measurements of a small vector” or ”large volumes of low-dimensional data”.

We partition the rows of A and entries of b:

$$
A = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_B
\end{bmatrix}, \quad b = \begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_B
\end{bmatrix}.
$$

If the loss function is separable over this partition, our optimization problem is

$$
\min_{\mathbf{x}} \sum_{i=1}^{B} \ell_i(\mathbf{A}_i \mathbf{x} - \mathbf{b}_i) + r(\mathbf{x}),
$$

where $r(\cdot)$ is the regularizer. We start by splitting the optimization variables in the loss function and those in the regularizer, arriving at the equivalent program

$$
\min_{\mathbf{x}} \sum_{i=1}^{B} \ell_i(\mathbf{A}_i \mathbf{x} - \mathbf{b}_i) + r(\mathbf{z}) \quad \text{subject to} \quad \mathbf{x} - \mathbf{z} = 0.
$$

This does not make the Lagrangian for the primal update separable, as the \mathbf{A}_i are still tying together all of the entries in \mathbf{x}. The trick is to introduce B different $\mathbf{x}_i \in \mathbb{R}^N$, one for each block, and then use the constraints to make them all agree. This is done with

$$
\min_{\mathbf{x}_1, \ldots, \mathbf{x}_B} \sum_{i=1}^{B} \ell_i(\mathbf{A}_i \mathbf{x}_i - \mathbf{b}_i) + r(\mathbf{z}) \quad \text{subject to} \quad \mathbf{x}_i - \mathbf{z} = 0, \ i = 1, \ldots, B.
$$
The augmented Lagrangian for this last problem is

\[L_\rho(x_1, \ldots, x_B, z, \mu_1, \ldots, \mu_B) = \sum_{i=1}^{B} \ell_i(A_ix_i - b_i) + \frac{\rho}{2} \sum_{i=1}^{B} \|x_i - z + \mu_i\|^2 + r(z), \]

where \(\mu_i \) are the (rescaled) Lagrange multipliers for the constraint \(x_i - z = 0 \).

As the Lagrangian is separable over the \(B \) blocks, each of the primal updates for the \(x_i \) can be performed independently. This makes the ADMM iteration

\[x_i^{(k+1)} = \arg \min_{x_i} \left(\ell_i(A_ix_i - b_i) + \frac{\rho}{2} \|x_i - z^{(k)} + \mu_i^{(k)}\|^2 \right) \]

\[i = 1, \ldots, B \]

\[z^{(k+1)} = \arg \min_{z} \left(r(z) + \frac{\rho}{2} \sum_{i=1}^{B} \|z - x_i^{(k+1)} - \mu_i^{(k)}\|^2 \right) \]

\[\mu_i^{(k+1)} = \mu_i^{(k)} + x_i^{(k+1)} - z^{(k+1)} \]

\[i = 1, \ldots, B. \]

The \(z \) update can be written in terms of the average of the \(x_i^{(k+1)} \). To see this, first note that

\[\sum_{i=1}^{B} \|z - v_i\|^2 = B\|z\|^2 - 2 \left(z, \sum_{i=1}^{B} v_i \right) + \sum_{i=1}^{N} \|v_i\|^2 \]

\[= B\|z\|^2 - 2B \langle z, \bar{v} \rangle + B\|\bar{v}\|^2 + \left(-B\|\bar{v}\|^2 + \sum_{i=1}^{N} \|v_i\|^2 \right) \]

\[= B\|z - \bar{v}\|^2 + \left(-B\|\bar{v}\|^2 + \sum_{i=1}^{N} \|v_i\|^2 \right). \]
where \(\bar{v} = \frac{1}{B} \sum_{i=1}^{B} v_i \). Thus

\[
\arg \min_z \left(r(z) + \frac{\rho}{2} \sum_{i=1}^{B} \| z - x_i^{(k+1)} - \mu_i^{(k)} \|_2^2 \right)
\]

\[
= \arg \min_z \left(r(z) + \frac{B \rho}{2} \| z - \bar{x}^{(k+1)} - \bar{\mu}^{(k)} \|_2^2 \right)
\]

Distributed ADMM (dividing rows of \(A \))

\[
x_i^{(k+1)} = \arg \min_{x_i} \left(\ell_i(A_i x_i - b_i) + \frac{\rho}{2} \| x_i - z^{(k)} + \mu_i^{(k)} \|_2^2 \right)
\]

\[
i = 1, \ldots, B
\]

\[
z^{(k+1)} = \arg \min_z \left(r(z) + \frac{B \rho}{2} \| z - \bar{x}^{(k+1)} - \bar{\mu}^{(k)} \|_2^2 \right)
\]

\[
\mu_i^{(k+1)} = \mu_i^{(k)} + x_i^{(k+1)} - z^{(k+1)}
\]

\[
i = 1, \ldots, B.
\]

where

\[
\bar{x}^{(k+1)} = \frac{1}{B} \sum_{i=1}^{B} x_i^{(k+1)}, \quad \bar{\mu}^{(k)} = \frac{1}{B} \sum_{i=1}^{B} \mu_i^{(k)}.
\]

The high-level architecture is that \(B \) separate units solve independent optimization programs for the \(B \ x_i \) updates. These are collected and averaged, and a single optimization program is solved to get the \(x \) update. The new \(z \) is then communicated back to each
of the \(B \) units. The Lagrange multiplier update can easily be computed both centrally and at the \(B \) units, so these do not have to be communicated.

Example: the LASSO

With \(\ell_i(A_i x_i - b_i) = \| A_i x_i - b_i \|_2^2 \) and \(r(x) = \tau \| x \|_1 \), the ADMM iteration becomes

\[
\begin{align*}
 x_i^{(k+1)} &= \arg \min_{x_i} \left(\| A_i x_i - b_i \|_2^2 + \frac{\rho}{2} \| x_i - z^{(k)} + \mu_i^{(k)} \|_2^2 \right) \\
 i &= 1, \ldots, B \\
 z^{(k+1)} &= T_{\tau/(B \rho)} \left(\bar{x}^{(k+1)} + \bar{\mu}^{(k)} \right) \\
 \mu_i^{(k+1)} &= \mu_i^{(k)} + x_i^{(k+1)} - z^{(k+1)} \\
 i &= 1, \ldots, B.
\end{align*}
\]

The \(x_i \) updates are all small unconstrained least-squares problems whose solutions can be computed independently; the \(z \) update is a simple soft thresholding, and the \(\mu_i \) updates are computed simply by adding vectors.

Example: SVM

For the SVM, we collect the weights and the offset into a single optimization vector

\[
 v = \begin{bmatrix} w \\ z \end{bmatrix} \in \mathbb{R}^{N+1}
\]

and use

\[
 A_i = \begin{bmatrix} -y_1 x_1 & y_1 \\ \vdots & \vdots \\ -y_N x_N & y_N \end{bmatrix}
\]
Note that the regularization does not include the last term in \mathbf{v}:

$$r(\mathbf{v}) = \sum_{n=1}^{N} |v[n]|^2.$$

This makes the ADMM iteration

$$\mathbf{v}_i^{(k+1)} = \arg \min_{\mathbf{v}_i} \left(\mathbf{1}^T (\mathbf{A}_i \mathbf{v}_i + \mathbf{1})_+ + \frac{\rho}{2} \| \mathbf{v}_i - \mathbf{z}^{(k)} + \mathbf{\mu}_i^{(k)} \|_2^2 \right)$$

$$\mathbf{z}_{1:N}^{(k+1)} = \frac{\rho}{1 + N\rho} \left(\mathbf{\bar{v}}_{1:N}^{(k+1)} + \mathbf{\bar{\mu}}_{1:N}^{(k)} \right)$$

$$\mathbf{z}^{(k+1)}[N + 1] = \mathbf{\bar{v}}^{(k+1)}[N + 1] + \mathbf{\bar{\mu}}^{(k)}[N + 1]$$

$$\mathbf{\mu}_i^{(k+1)} = \mathbf{\mu}_i^{(k)} + \mathbf{v}_i^{(k+1)} - \mathbf{z}^{(k+1)}.$$

where $\mathbf{x}_{1:N}$ is the first N entries of the vector \mathbf{x}, and $\mathbf{x}[N + 1]$ is the last entry.

Splitting across features

Similarly, we can divide up the *columns* of \mathbf{A}. This is described in [BPC$^+$10, Section 8.3].
References